
NASA TECHNICAL NOTE

COMPUTE - A TIME-SHARING

DESK CALCULATOR PROGRAM

by Paul Swigert

Lewis Research Center
CleveZmd, Ohio

N A T I O N A L AERONAUTICS A N D SPACE A D M I N I S T R A T I O N W A S H I N G T O N , D. C. NOVEMBER 1968

COMPUTE - A TIME-SHARING DESK CALCULATOR PROGRAM

By Paul Swigert

Lewis Research Center

Cleveland, Ohio

I

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Clearinghouse for Federal Scientific and Technical Information
Springfield, Virginia 22151 - CFSTI price $3.00

ABSTRACT

COMPUTE i s a computer program, writ ten primarily in FORTRAN IV, which oper
a t e s under the IBM 360/67 Time-sharing System (TSS). COMPUTE allows the TSS user
to perform various numerical calculations without writing FORTRAN programs. The
use r may thus solve various numerical problems while a t the TSS terminal by simply
communicating with COMPUTE. This report i s intended to introduce the use r to
COMPUTE. It i s anticipated that the user will obtain from this introduction the informa
tion necessary to begin using COMPUTE. More specific information about the capabil
i t ies of COMPUTE can be derived from the actual u se of the program. This i s possible
because of numerous e r ro r , warning, and information messages generated by COMPUTE
and printed at the terminal.

ii

C0NTENTS

Page

SUMMARY . 1

INTRODUCTION . 1

PRELIMINARY CONCEPTS . 2

DEFINITION O F TERMS . 4

COMPUTE STATEMENTS . 5

Name Definition Statements . 5

Values . 5

User functions . 6

Procedures . 6

User programs . 7

System functions . 8

Output Statements . 9

Value output . 9

Nonvalue output . 10

Erase Statements . 10

Numerical Integration Statement . 11

Return Statement . 11

CONCLUDING REMARKS . 11

APPENDIXES

A .SUMMARY OF COMPUTE STATEMENTS AND ABBREVIATIONS 13

B .ANNOTATED COMPUTE LISTING . 15

iii

COMPUTE - A TIME-SHARING DESK CALCULATOR PROGRAM

by Pau l Swigert

Lewis Research Cen te r

SUMMARY

COMPUTE is a computer program written primarily in FORTRAN IV and operates
under the IBM 360/67 Time Sharing System (TSS). COMPUTE allows the TSS user to
perform various numerical calculations without writing FORTRAN programs. The user
may thus solve various numerical problems while at the TSS terminal by simply com
municating with COMPUTE.

This report is intended to introduce the user to COMPUTE. It is anticipated that the
user will obtain from this introduction, information necessary to begin using COMPUTE.
More specific information about the capabilities of COMPUTE can be derived from the ac
tual use of the program. This is possible because of numerous e r ror , warning, and in
formation messages generated by COMPUTE and printed a t the terminal.

INTRODUCTION

Computer time-sharing, or the simultaneous use of the computer by many users ,
allows the computer to be used in a variety of new ways. One of these new applications
makes the computational power of a large computer available to the nonprogrammer,
such as a research scientist, engineer, or mathematician. These personnel often need
solutions to mathematical problems that are too lengthy for a desk calculator and yet
simple enough so that the t ime taken to describe the problem to a programmer is greater
than warranted.

Because of the unique man-machine dialogue provided for in time-sharing, the user
This interaction eliminates the time involved inmay correct mistakes as they occur.

submitting several conventional batch computer jobs to cor rec t e r rors . This time some
times is measured in days, even for simple programs.

Another advantage to solving one's own problem with time-sharing is that the prob
lem parameters may be varied dynamically by the user. That is, if an unexpected resul t
is obtained in the solution of a problem, the causes may be investigated immediately and

corrected or resolved. This approach to problem solving is completely absent in a non
time-sharing environment.

To provide this service to personnel who have had no, or limited, experience with
computers and also to computer programmers, an interpretive on-line computer language
was developed. Interpretive means that the language statements are executed or stored
primarily in the form in which they a r e entered. On-line r e fe r s to the direct communica
tion between the user and the computer.

This language, which consists of various statements, is the input to a computer pro
gram. This program, written primarily in FORTRAN, is called COMPUTE. The user
need not distinguish between the physical computer, the program COMPUTE, or the lan
guage. He only needs to know a few statements and how to write FORTRAN-like expres
sions. Because of extensive e r ro r and information messages, the user is able to learn
the language by using it.

Along with providing a nonprogrammer with computational facilities, such as func
tion evaluation, algebraic expression evaluation, looping, and integration, COMPUTE is
flexible enough to allow a programmer to expand COMPUTE'S facilities. This is made
possible by COMPUTE'S ability to reference programs written by the user. These user
programs may be anything from matrix manipulation programs to microfilm plotting pro
grams.

The purpose of this report is to describe the use of COMPUTE. It is not intended to
be a description of the COMPUTE program, but rather a user 's manual. Some of the ma
terial in the report will be elementary for programmers, while some will seem advanced
to the nonprogrammer. The potential user should not be too concerned with concepts he
does not understand. The real advantage of a language of this type is that the user can
learn it by experimenting. He should feel free to try his ideas and let COMPUTE point
out e r r or s and inconsistencies.

The next section gives some basic information about the overall use of COMPUTE.
Terms used in describing COMPUTE commands a r e listed in the section DEFINITION OF
TERMS. COMPUTE commands and input statements a r e then presented. Appendix A
gives a summary of COMPUTE commands and statements with command abbreviations.
The abbreviations may be used as if they were the command they represent, Appendix B
is an annotated example of a COMPUTE terminal session.

PRELIMINARY CONCEPTS

COMPUTE may be accessed through a remote terminal connected to a central com
puter. The terminal may be one of many different types; for example, a typewriter, a
teletype machine, and a CRT (cathode ray tube) with typewriter input. Each of these

2

terminals will probably have i ts own method of entering, correcting, or canceling a line
of input. Because of these differences, the physical operation of entering a line is not
discussed. The reader should be aware, however, that the basic unit of input is one line
of characters.

After the user has "logged on, ' ? that is, identified himself to the system, the first
line to be entered is

RUN COMPUTE

The system will then print some information, and COMPUTE will print

ENTER USE I(EYW0RD

The use keyword is a parameter of COMPUTE that is used for special applications. The
use keyword is of minor concern to a COMPUTE user and should be defaulted by entering
a line of blanks (i. e . , simply press the return key). COMPUTE will now print

INITIALIZATION COMPLETE
READY

The first line indicates that COMPUTE is in an initial state. The READY means that
COMPUTE is now ready to accept user input. The READY is not printed when COMPUTE
is waiting for a response, from the user, for some information needed to complete the
current task.

Since the basic unit of input to COMPUTE is one line, provision is made for continu
ation lines. If the last character of any line is a vertical bar (I), the next line is consid
ered to be a continuation. The maximum number of lines is three. Therefore, only two
consecutive continuation lines a r e allowed.

Comments may be included anywhere in any line by enclosing the comments in apos
trophes. For example, 'THIS IS A COMMENT. ? would be considered as a comment by
COMPUTE. Spaces or blanks a r e ignored by COMPUTE and may be placed anywhere in
the input line.

COMPUTE will automatically inform the user of commands that a r e used incorrectly,
of e r r o r s in expressions, and of various l imits if they a r e exceeded. Therefore, the user
does not need to remember many restrictions and forms. This is advantageous to the oc
casional user. The new user also benefits since he can let COMPUTE teach him its lan
guage by supplying information about itself.

3

DEFINITION OF TERMS

Name: 	 One to eight alphameric characters, the first of which must be alphabetic.
There are five types of names depending on how they a r e defined to
COMPUTE. The method by which these names a r e defined to COMPUTE is
discussed in the next section.

(1)Value names
(2) User function names
(3) Procedure names
(4) User program names
(5) System function names

Examples: 	 L5
JOB1
ALPHA

The five types are

Value: A number whose magnitude is between the approximate limits of and
or zero. These numbers may be written in scientific notation by re

placing the xlOm by E*:". The plus sign may be omitted. For example,
1 . 6 3 ~ 1 0 - ~ ~is written as 1.633-23. All computation is performed with
about six decimal digits. Number inputs to COMPUTE a r e rounded to this
accuracy.
Examples: 21

.203
5E3
5.OE-3

Expression: 	 Values, names, and function references (user or system) combined by
arithmetic operation symbols and parentheses. The arithmetic operators
a r e

(1) Exponentiation, **
(2) Multiplication, *
(3) Division, /
(4) Addition, +
(5) Subtraction, -
Where parentheses a r e omitted o r where the entire arithmetic expres

sion is enclosed within a single pair of parentheses, the order in which the
operations a r e performed is as follows:

(1)Evaluation of functions
(2) Exponentiation, **
(3) Multiplication and division, * and /

4

I

(4) Addition and subtraction, + and -
In addition, if two operators of the same level are used consecutively, the
operations are performed from left to right.

Parentheses may be used in arithmetic expressions, as in algebra, to
specify the order in which the arithmetic operations are to be performed.
Where parentheses are used, the expression within the parentheses is eval
uated before the result is used. Example: A**(-l.5)*SIN(BETA/3.6)/(X+Y)
is equivalent t o

COMPUTE STATEMENTS

This section gives descriptions and examples of all valid COMPUTE statements and
commands. Most of the commands have abbreviations that may be used in place of the
full command. These abbreviations along with a summary of COMPUTE statements a r e
given in appendix A.

Name Def in i t ion Statements

COMPUTE allows the user storage of and/or access to certain types of information.
This information is grouped into five categories:

(1)Values
(2) User functions
(3) Procedures
(4) User programs
(5) System functions
Each piece of information to be saved or accessed, except the system supplied func

tions, is given a name by the user . The user may use any name he chooses except the
reserved system function names, such as SIN, COS, and ABS. Each of the categories
a r e discussed separately in the following paragraphs:

Values. - Values are defined to the program by typing a name, an equal sign, and an
expression. The program will evaluate the expression, save the result, and give the r e
sult the name appearing on the left of the equal sign.

General form: name = expression

5

I

Examples: A = 3.0
B = A*(26+2.8)
ALPHA = SIN(2.8)
223 = Z*@+Y)

User functions. - User functions are defined to the program by typing a name (the. . .

name to be assigned to the function), argument names separated by commas and enclosed
in parentheses, an equal sign, and an expression that contains the argument names.
(Argument names are dummy variables and are meaningful only in the function definition.)
The program will save the function and give it the name appearing to the left of the paren
theses enclosing the arguments. This user function may then be evaluated, by use in an
expression, as many times as desired.

General form: names(name1, name2, name3, . . .) = expression
Examples: CUBRT(X) = X**O. 333333

F(X) = A*X**2+B*X-tC
DF(X) = 2*A*Xi-B
G(X) = X-F@)/DF(X)
NR5(X) = G(G(G(G(G(X)))))
SIN2(Z) = SIN(Z)**2
SUMSQ(X, Y) = X**2+Y**2

(The function NR5, when evaluated, will give a value equal to five Newton-Raphson itera
tions on the function F, where the argument to NR5 is the initial guess.)

Procedures. - A procedure is a group of value definitions and/or value output state
ments that are to be used in a looping or iterative process, The general form of defining
procedures to the program is

BEGIN (name)
Any number of value definitions and/or value output statements.
END or END (expression 1 > or < expression 2)

COMPUTE will save the statements between the BEGIN and END statements and give
them the name that appears in the parentheses of the BEGIN statement. These state
ments will be numbered automatically by COMPUTE. The numbers are appended to the
READY statements printed between the BEGIN and END statements. Two forms of the
END statement a r e permitted. The f i r s t one, where no parentheses appear, assumes
that the looping will terminate after a maximum number (specified by the user) of itera
tions has been reached. The second form allows the user to end the looping when the
conditional expression inside the parentheses is satisfied o r after a maximum number of
iterations, whichever occurs first. No provision has been made to allow the alteration
o r insertion of statements in procedures.

6

Example: BEGIN (ALPHA)
x = x+l
Y = SQRT (X)
X = ?
Y = ?
END (X>25)

To perform the operations stored in procedures the name of the procedure and the
maximum number of iterations must be supplied. The general form of supplying this in
formation is

DO (name*value)

or

DO (name)

Here, name refers to the name of a procedure and value to the maximum number of itera
tions desired. If the second form is used, value is assumed to be 1.

Examples: DO (INT"20)
DO (BETA*5)
DO (NEWTON)

U s e r programs. - User programs are FORTRAN or assembly language subprograms
that have been compiled or assembled before running COMPUTE. Access to a function
subprogram is achieved by simply using the function name, with the proper number of
arguments, in an expression. A call to subroutine is made by typing the subroutine name
along with the arguments, if any, enclosed in parentheses. In this manner the user de
fines to COMPUTE the name as a user program name.

The subprograms are free to reference data, call other subprograms, and perform
input and output like any TSS subprogram. The subprograms a r e restricted, however,
from passing data back to COMPUTE through the calling vector. Data may be passed to
COMPUTE only as the result of a function subprogram. Since COMPUTE performs all
i ts calculations in floating point arithmetic, it makes no sense to consider subprograms
that require arguments o r yield function results in any other number type.

In the following examples, assume that SUBl and SUB2 are subroutines and that F1
and F2 are functions that have been previously compiled or assembled. The f i rs t ex
ample would cause subroutine SUBl to be loaded and called. The execution of a return
statement in SUBl would return control to COMPUTE. In the second example, function
subprogram F1 would be loaded and called with two arguments, X and Y. Subroutine
SUB2 would then be loaded and called with three arguments, X, Y, and the value obtained

7

f rom funcation F1. The third example would load F 2 and make three calls to it. The
f i r s t call would have Z as the argument. The second call would use the value obtained
from the f i rs t call, and the last call would use the value from the second call as the argu
ment.

Examples: SUB1
SUB2@, y, F1@,Y))
A = F2(F2(F2(Z)))

System functions. - Certain commonly used function have been defined to COMPUTE
and a r e always available to the user. The names of these functions a r e system function
names. The system function names a r e reserved names in that the user may not use them
except to refer to the functions they represent.

A l ist of system functions available to the user, a t this writing, appears in table I.
Two facts about the system functions in table I a r e worth noting: (1) all trigonometric
functions either accept radian measure as their argument o r yield radian measure as their
functional value, and (2) the integration function INT is simply a function of three argu-

TABLE I. - LIST OF AVAILABLE SYSTEM FUNCTIONS

EXP
LN
LOG
SIN

cos
TAN
ARCSW
ARCCOS
ARCTAN
SINH
COSH
TANH
SQRT
ERF
ERFC

GAMMA
LNGAMMA

ABS
INT

Definition

Exponential
Natural logarithm
Common logarithm
Sine
Cosine
Tangent
Arcsine
Arccosine
Arctangent
Hyperbolic sine
Hyperbolic cosine
Hyperbolic tangent
Square root
E r r o r function
Complemented

e r r o r function
Gamma function
Natural logarithm o

gamma function
Absolute value
Integra tion.

3 arguments

(USR function, limit, limit)

.~..

Argument range

X < 174.673
x > o
x > o
1x1< (2**18)*PI
1x1 < (2**18)*PI
1x1< (2**18)*PI

1x1 < 1
1x1 < 1
No restriction
X < 174.673
X < 174.673
No restriction
x > = o
No restriction
No restriction

2**(-252) < X < 57. 5 7 ~
0 < X < 4.29133 + 73

No restriction
No restriction

8

ments, the user function name, an expression for the lower limit, and an expression for
the upper limit.

Any system function may be used in user function definitions, thus allowing the user
to build quite complicated functions. The system functions may, of course, be nested just
as user functions and user program functions.

Additions and alterations may be made to the system functions from time to time.
The user is, therefore, advised to obtain a current list by occasionally using the DUMP
command. The DUMP command is discussed in the section Nonvalue output.

Output S ta tements

There a r e two categories of output statements recognized by COMPUTE:

(1)Value output

(2) Nonvalue output

The value output category allows the user to print results of numerical operations, while
the nonvalue category allows the user to print user functions, procedures, and system
function names. Only statements in the value output category a r e allowed in procedures.
The value output statements a r e discussed first.

Value output. - Value output is divided into three general forms. A description of
these forms follows:

(1) Form 1: To obtain the value assigned to a value name, the user types the value
name followed by an equal sign and a question mark.

General form: name = ?
Examples: A = ?

ROOT = ?
(2) Form 2: The user may obtain the result of an expression by typing the expression

followed by an equal sign and a question mark.
General form: expression = ?
Examples: 6.0**0. 5 = ?

SIN(2.6) = ?
A+B*COS(C) = ?

(3) Form 3: 	 For output of several values assigned to value names, the PRINT com
mand is available. The names that appear in this command must be
value names.

General form: PRINT (namel, name2 . . .)
Examples: PRINT (A, B, C)

PRINT (ROOT, ANSWER)

9

Nonvalue output. - Nonvalue output is also divided into two general forms. A de
scription of these forms follows:

Form 1: 	 To obtain information about a nonvalue name (i.e . , a user function, pro
cedure, program, or system function name), the user types the name fol
lowed by an equal sign and a question mark. COMPUTE will then respond
with a description of the name type.

General form: name = ?
Examples: 	ALPHA = ?

S I N = ?
SQRT = ?

Form 2: 	 To obtain a listing of all names of a certain type, the user types the com
mand DUMP followed by an option enclosed in parentheses. If the user
specifies value names to be listed,

General form: DUMP (option)
VALUES

Where option = 	 USR FUNCTIONS
SYS FUNCTIONSiPROCEDURES

Examples: DUMP (VALUES)
DUMP (USR FUNCTIONS)
DUMP (PROCEDURES)
DUMP (SYS FUNCTIONS)

the corresponding values a r e also listed.

Erase Statements

Two commands a r e provided that allow the user to delete, from the program, names
that have been defined by the user.

The f i rs t command deletes all names, except system function names and user pro
gram names, from COMPUTE. This command also allows the user to enter a new use
keyword if desired.

General form: RESTART
Example: RESTART
The second command deletes specific names from the program. To accomplish this

the use r types the command ERASE followed by the names to be deleted enclosed by
parentheses. These names may include any name that has been defined by the user, ex
cept user program names. This command does not allow the user to e rase specific lines
of a procedure, but will e rase complete procedures.

General form: ERASE (namel, name2, . . .)

10

I

Examples: 	 ERASE (F,DF)
EFtASE (A, B, ALPHA)

Numer ica l In tegra t ion Statement

Numerical integration of user functions is provided for in COMPUTE through the
INTEGRATE command. After the INTEGRATE command is entered, COMPUTE prompts
the user for the user function name or user function definition and for the limits of inte
gration. The answer is then printed. A warning is printed if the answer is not accurate
to five significant figures. The INTEGRATE command is simply a different form of the
INT function described in the section Name Definition Statements. Results obtained from
the two forms will be identical.

General form: INTEGRATE
Example: INTEGFATE

R e t u r n Statement

A command is provided by COMPUTE that allows the user to re turn to the TSS sys
tem.

General form: STOP
Example: STOP

CONCLUDING REMARKS

The computer time-sharing program described in this report promises to make some
of the computational power of large computers available to noncomputer personnel.
Complex desk-type calculations a r e made simple and fast. The program has been made
flexible enough so that additions a r e easy to make. When new facilities a r e added to the
computer system, COMPUTE may be modified easily to incorporate them.

Extensions of COMPUTE that a r e presently being considered a r e (1) plots of user
functions on a CRT (cathode ray tube) or on microfilm, (2) algebraic manipulation, and

11

-- - I , ,. ., ..,-. .

(3) a differential equations solver. With these added features COMPUTE will become an
even more powerful tool for on-line problem solving.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, October 3, 1968,
125-23-02-15-22. '

12

APPENDIX A

SUMMARY OF COMPUTE STATEMENTS AND ABBREVIATIONS

This appendix contains a list of all valid COMPUTE statements, along with a brief
description and abbreviation (If any). The abbreviation may be used in place of the full
command. For a complete description of the commands, the text of this report should be
consulted.

General form of statement

name = expression

name(name1, name2,. ..)
= expression

BEGIN (name)

END or

END (expression1 > or <

expr ession2)

DO(name *value) or

D0(name)

name = ?

expression = ?

PRINT (namel, name2, ...)

Description

Defines name as the value obtained
from (expression).

Defines name as a user function
with the function being (expression).

Denotes the s ta r t of what is to be
procedure (name).

Denotes the end of the procedure
started by a previous begin state
ment.

Causes statements stored in pro
cedure (name) to be looped through
a maximum number (value) or
times.

Causes the value stored in (name)
or information about (name) to be
printed.

Causes the value obtained from
evaluation of (expression) to be
printed.

Causes the values stored in
(namel), (name2), . . ., etc.
to be printed.

Abbreviation

None

None

B(name)

None

None

None

None

P(name1, name2, ...)

13

General form of statement Description

DUMP (option) 	 Causes all names of the type
specified in option to be printed.

option 	USR FUNCTIONS
SYS FUNCTIONS

RESTART 	 Initializes COMPUTE by erasing
all names except system and user
program names. Allows the user
to enter a new use keyword.

ERASE (namel, name2, ...) Erases the values, user func
tions, and procedures with the

names (namel), (name2), . . - 9

etc.

INTEGRATE 	 Numerically integrates user func
tions.

STOP Returns user to TSS.

Abbreviation

D(option)

V
UF
SF
P

R

E(name1, name2, ...)

I

S

1 4

APPENDIX B

ANNOTATED COMPUTE LISTING

The listing presented in this appendix is from an actual COMPUTE session. The line
numbers were added to aid the reader in following the description.

The user usually types in lower case, while the system and user programs type in
upper case. This convention is terminal dependent, however.

Desc r i pti on

In the description the numbers refer to line numbers on the listing.

Line (s) Description

1-2

3

4

5

6

7

8

9-22

23

24-25

26-28

29-33

User identifies himself to the time-sharing system.

User requests that program COMPUTE be run.

System message identifying input/output version.

COMPUTE requests use keyword from user.

User enters a line of blanks, by pressing return, to default t h i s parameter.

COMPUTE acknowledges that the use keyword is valid and that COMPUTE

is in an initial state.

COMPUTE indicates that it is ready to accept user input.

User defines a procedure named NEWTON. This procedure uses the Newton-
Raphson technique to find the root of the user function F(X). The procedure
will print the independent variable, functional values of the function F, the f i r s t
derivative of F, and the correction factor H. The procedure will stop looping
when the magnitude of the correction factor becomes l e s s than the value of
LIMIT. Note the numbering of statements contained in procedures. This pro
cedure is six statements long.

The user requests that procedure NEWTON be looped through a maximum of
10 times.

COMPUTE asks the user to define an unknown variable and the user responds.

COMPUTE detects an e r ro r and informs the user.

User defines the two required functions and executes procedure NEWTON again.

1 5

Line(s)

34-39

40

41-45

46-47

48-56

57- 59

60-69

70-71

72-78

79-119

120

121-126

127-129

130-141

142-145

146-155

156-160

161-171

16

Description

COMPUTE requests and user defines unknown values.

F i r s t line of output from NEWTON is printed by COMPUTE.

The last unknown value is defined, and COMPUTE continues to loop through
NEWTON.

COMPUTE indicates that looping was stopped because the condition in the END
statement was met.

U s e r redefines the independent variable and initiates NEWTON again. An e r r o r
is detected and reported by COMPUTE and verified by the user.

U s e r changes the independent variable and initiates NEWTON.

Output generated by NEWTON.

Looping was terminated because of maximum iterations.

Since convergence has not been achieved, the user continues the looping by is
sueing another DO command. COMPUTE continues to loop in NEWTON until
the condition in the END statement is met.

Illustration of the different options in the DUMP command.

U s e r issues the INTEGRATE command.

COMPUTE prompts user for needed information and prints the answer.

User checks COMPUTE answer for the integral.

User integrates and checks the result for another function. In this example the
user defines the function instead of supplying a function name.

The user makes use of the INT function to define Dawson's integral:

Note that the definition requires two user functions since the INT function re
quires a user function name be its f i r s t argument.

A second procedure is defined. This procedure, DAWSON will use the
Dawson's integral function just defined and print a table.

The user initializes X and DELTAX and initiates the procedure DAWSON.

The table of Dawson's integral generated by the procedure is printed.

Line(s) Description

172-173 	 COMPUTE informs the user that execution of the procedure was terminated be
cause of the iteration count.

174-182 	 The user makes two references to a user supplied function subprogram. The
subprogram MAX returns as its functional value the maximum of the supplied
arguments. Note that the second reference does not cause the program loaded
message to be printed. This is because the program is only loaded once.

183-188 User requests and obtains a printout of all value names he has defined.

189-192 	 User issues a STOP command for COMPUTE and a LOGOFF command for the
time-sharing system. The system acknowledges the STOP and LOGOFF.

17

I

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
1 7
18
1 9
20
21

1

2

3

4

5

6

. - - ..-

Sample COMPUTE Listing

27

31
32
33
34
35

36
37

4 3
44
45
46
4 7
48
49
50

51

5 2
53
54
55

56
5 7

#BOO1 LOGON 0 9 / 1 0 / 6 8 1 5 : 1 9
xxpaul,,n,m,ps
-r u n compute
F I D VERSION J A N 1,1968-
ENTER USE KEYI4ORD.

I N I T I A L IZ A T l ON COMPLETE.

READY

b e g i n (n e w t o n)

READY

f x = f (x)

READY

d f x = d f (x)

READY

h = - f x / d f x

READY

pr i n t (x , f x , dfx, h 1

READY
x = x + h
READY
e n d (a b s (h) < l i m i t)
READY
do (new t o n 1 0 1

X UNKNOWN. ENTER NUMBER OR PRESS RETURN TO CANCEL.
3

FUNCTION F UNKNOWN.

ERROR I S I N STATEMENT 1 OF PROCEDURE NEWTON
READY
f (x) = a+b*x+c*x+*2
READY
d f (x) = b+2*c*x
READY
do (newton* lO)

A UNKNOWN. ENTER NUMBER OR PRESS RETURN TO CANCEL.
- 2 0

B UNKNOWN. ENTER NUMBER CR PRESS RETURN TO CANCEL.
8.0

C UNKNOWN. ENTER NUMBER OR PRESS RETURN TO CANCEL.
1

x = 3 . 0 0 0 0 0 FX= 1 3 . 0 0 0 0 OFX= 1 4 . 0 0 0 0
L I M I T UNKNOWN. ENTER NUMBER OR PRESS RETURN TO CANCEL.

. 0 0 0 0 0 0 0 1
X= 2 . 0 7 1 4 3 FX= 0 . 8 6 2 2 4 1 DFX= 1 2 . 1 4 2 9
X= 2 . 0 0 0 4 2 FX= 0 . 5 0 3 5 4 0 E - 0 2 DFX= 1 2 . 0 0 0 8
x = 2.00000 FX= 0 .0 DFX= 12.0000

END OF DO. 0 . 0 < 0 . 1 0 0 0 0 0 E - 0 7
READY
x=-4
READY
do (newton* lO)
D I V I D E BY ZERO.

ERROR I S I N STATEMENT 3 OF PROCEDURE NEWTON

READY

d f (x) = ?
= 0.0
READY
x=-4.01

H= - 0 . 9 2 8 5 7 1

H= - 0 . 7 1 0 0 8 0 E - 0 1
H= - 0 . 4 1 9 5 8 7 E - 0 3
H= 0.0

18

58

59

60
61

62

63

64
65

66
67

68

69

70

7i

72

73

74

75

76

77

18
19

80

81

82

83

84

85

8 6
8;

88

89

90

91

92

93

94

96

91

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

READY
d o (n e w t o n * l o)

X= - 4 . 0 1 0 0 0 FX=
X= - 1 8 0 4 . 1 3 FX=
X= - 9 0 4 . 0 7 8 FX=
X= - 4 5 4 . 0 5 9 FX=
X= - 2 2 9 . 0 7 0 FX=
X= - 1 1 6 . 6 1 5 FX=
X= - 6 0 . 4 6 7 3 FX=
X= - 3 2 . 5 5 2 4 FX=
X= - 1 8 . 9 0 6 6 FX=
X= - 1 2 . 6 6 0 8 FX=

END OF DO. 1 0 I T E R A T I O N S .
READY
d o (n e w t o n * l O)

X= - 1 0 . 4 0 8 7 F X =
X= - 1 0 . 0 1 3 0 FX=
x = - 1 0 . 0 0 0 0 FX=
x = - 1 0 . 0 0 0 0 FX=

END OF DO. 0.0 < 0 . 1 0 0 0 0 0 E -

READY

d u m p (v a 1 u e s)

DUMP OF VALUES.

x = - 1 0 . 0 0 0 0 A=
FX= 0.0 OFX=

READY
dump(usr f u n c t i o n s)
DUMP OF USER FUNCTION NAMES.

F 1 ARGUMENTS.
DF 1 ARGULiENTS.

READY
d u m p (p r o c e d u r e s)
DUMP OF PROCEDURE NAMES.

NEWTON
READY
d u m p (s y s f u n c t i o n s)
L I S T OF A V A I A B L E FUNCTIONS.

NAME D E F l N I T 1 ON

EXP EX PO N ENT IA L

LN INATURAL LOGAR I THM

LOG COMMON LOGAR I THM

S I N S I N E

cos COS 1 NE

TAN TANGENT

ARCS IN ARCS INE
ARCCOS ARCCOSINE
ARCTAN A R CTA N G F ?IT
S l N H HYPFRROLIC S I N E
COSH HYPFQROLIC COSINE
TANH 1IYPF”ROLIC TANGENT
SQRT SOl!i\RE ROOT
ERF E R R O R FUNCTION
ERFC 	 COM P L Et4E NTE 0

ERROR FUNCTION
GAMMA GAI.II*IA FUNCTION
LNGAMMA NATURAL LOGARl THI.1

OF GAMMA FUNCTION
ABS ABSOLUTE VALUE
I NT 	 INTEGRATION

3 ARGUMENTS

- 3 5 . 9 9 9 9
0 . 3 2 4 0 4 5 E 0 7

8 1 0 1 0 4 .
2 0 2 5 1 7 .
5 0 6 2 0 . 3
1 2 6 4 6 . 1
3 1 5 2 . 5 5
7 7 9 . 2 3 9
1 8 6 . 2 0 7
3 9 . 0 1 0 0

5 . 0 7 1 9 0
0 . 1 5 6 5 8 6
0 . 1 6 7 8 4 7 E - 0 3
0.0

. 0 7

- 2 0 . 0 0 0 0
- 1 2 . 0 0 0 0

ARGUMENT RANGE

X (1 7 4 . 6 7 3

x > o

x > O

I X I < (2 * * 1 8) * P I

1 x 1 < (2 * * 1 8) * P I

1 X I < (2 * * 1 8) * P I

I X I < l
I X I (1
rio R E S T R I CTI ON
X (1 7 4 . 6 7 3

X (1 7 4 . 6 7 3

NO R E S T R I C T I O N

X>=O

PI0 R E S T R I C T I O N

NO RESTR ICT IO N

NO R E S T R I C T I O N
NO R E S T R I C T I O N

DFX= - 0 . 1 9 9 9 8 6 E - 0 1 H= - 1 8 0 0 . 1 3
DFX= - 3 6 0 0 . 2 7 H= 9 0 0 . 0 5 7
DFX= - 1 8 0 0 . 1 6 H= 4 5 0 . 0 1 9
DFX= - 9 0 0 . 1 1 8 H= 2 2 4 . 9 8 9
DFX= - 4 5 0 . 1 3 9 H= 1 1 2 . 4 5 5
DFX= - 2 2 5 . 2 3 0 H= 5 6 . 1 4 7 5
DFX= - 1 1 2 . 9 3 5 H= 2 7 . 9 1 4 9
DFX= - 5 7 . 1 0 4 8 H= 1 3 . 6 4 5 8
DFX= - 2 9 . 8 1 3 2 H= 6 . 2 4 5 7 8
DFX= - 1 7 . 3 2 1 7 H= 2 . 2 5 2 1 0

DFX= - 1 2 . 8 1 7 5 H= 0 . 3 9 5 7 0 2
DFX= - 1 2 . 0 2 6 1 H= 0 . 1 3 0 2 0 5 E - 0 1
DFX= - 1 2 . 0 0 0 0 H= 0 . 1 3 9 8 7 2 E - 0 4
DFX= - 1 2 . 0 0 0 0 H= 0.0

B = 8 . 0 0 0 0 0 c = 1 . 0 0 0 0 0

H= 0.0 L I M I T = 0 . 1 0 0 0 0 0 E - 0 7

(USR FUNCT I ON, L I M I T, L IM IT
READY
i n t e g r a t e
ENTER USER FUNCTION NAME, D E F I N E USER FUNCTION, O R PRESS RETURN TO CANCEL
d f
FNTER LOWER L I M I T , A COMMA, IJPPER L I M I T , O R PRESS PETURN TO CANCEL.
0 ,5 .0

THE INTEGRAL I S 6 5 . 0 0 0 0

19

6 5 . 0 0 0 0

I __ ..

126

127

128

129

130

131

132

133

134

135

136

137

138

199

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

116

177

17b

179

180

181

182

183

184

18s

186

187

188

189

190

191

192

READY
f (5 1 - f (0)=?
= _.. .~
READY

i n t e g r a t e

ENTER USER FUNCTION NAME, D E F I N E USER FUNCTION, OR PRESS RETURN TO CANCEL.

g (x) = s i n (x)

ENTER LOWER L I M I T , A COMMA, UPPER L I M I T , OR PRESS RETURN TO CANCEL.

0 .0 ,3 .141593

THE INTEGRAL IS 2 . 0 0 0 0 0

READY

c o s (O) - c o s (p i) = ?

P I UNKNOWN. ENTER NUMBER OR PRESS RETURN TO CANCEL.
3 . 1 4 1 5 9 3
= 2.00000
READY
d (x) = e x p (- x * * Z) * i n t (e Z , O , x)
READY
e 2 (t) = e x p (t * * 2)
READY
b e g i n (d a w s o n 1
READY 1
dx = d (x)
READY 2
p r i n t (x , d x)
READY 3
x = x + d e l t a x
READY 4
end
READY
x = o
READY
d e l t a x = . 2
READY
d o (d a w s o n * l l)

x = 0 .0
x = 0 . 2 0 0 0 0 0
x = 0 . 4 0 0 0 0 0
X= 0 . 6 0 0 0 0 0
X= 0 . 8 0 0 0 0 0
x = 1 . 0 0 0 0 0 0
x = 1 . 2 0 0 0 0
X= 1 . 4 0 0 0 0
X= 1 . 6 0 0 0 0
X= 1 . 8 0 0 0 0
x = 2 . 0 0 0 0 0

END OF DO. 11 I T E R A T I O N S .
READY
m a x (a, b, c) = ?
PROGRAM MAX LOADED.
= 8 . 0 0 0 0 0
READY
m a x i m u m = m a x (a * * Z , b * * Z , c * * Z)
READY
m a x i m u m = ?

MAX IMUM = 4 0 0 .00 0
READY
d u m p (v a l u e s)
DUMP OF VALUES.

x = 2 . 2 0 0 0 0

DX= 0 .0
OX= 0 . 1 9 4 7 5 1
DX= 0 . 3 5 9 9 4 3
OX= 0 . 4 7 4 7 6 3
OX= 0 . 5 3 2 1 0 1
DX= 0 . 5 3 8 0 7 9
OX= 0 . 5 0 7 2 7 3
DX= 0 . 4 5 6 5 0 7
o x = 0 . 3 9 9 9 3 9
OX= 0 . 3 4 6 7 7 1
OX= 0 . 3 0 1 3 3 8

A = - 2 0 . 0 0 0 0
FX= 0.0 DFX= - 1 2 . 0 0 0 0
P I = 3 . 1 4 1 5 9 DELTAX= 0 . 2 0 0 0 0 0

READY
s t o p
CHCIW E X I T I N USER PROGRAM
-togoff
BOO7 LOGOFF ACCEPTED 0 9 / 1 0 / 6 8 AT 1 5 : 5 6 .

B = 8 . 0 0 0 0 0 c = 1 . 0 0 0 0 0
H= 0 .0 L IM IT = 0 . 1 0 0 0 0 OE-0 7

OX= 0 . 3 0 1 3 3 8 MAXIMUM= 4 0 0 . 0 0 0

20 NASA-Langley, 1968 -8 E-4681

NATIONAL AND SPACE ADMINISTRATION POSTAGE AND FEES PAIDAERONAUTICS
D. C. 20546 NATIONAL AERONAUTICS ANDWASHINGTON,

SPACE ADMINISTRATION
OFFICIAL BUSINESS FIRST CLASS MAIL

"The aeronautical and space activities of the United States shall be
condncted so as t o contribute . . . t o the expansion of hzinzan knowl
edge of phenomena in the atniosphere and space. T h e Administration
shall provide for the widest practicable and appropriate dissemination
of inforniation concerning its activities and the results thereof."

-NATIONALAERONAUTICSAND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and
technical information considered important,
complete, and a lasting contribution to existing
knowledge.

TECHNICAL NOTES: Information less broad
in scope but nevertheless of importance as a
contribution to existing knowledge.

TECHNICAL MEMORANDUMS :
Information receiving limited distribution
because of preliminary data, security classifica
tion, or other reasons.

CONTRACTOR REPORTS: Scientific and
technical information generated under a NASA
contract or grant and considered an important
contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information
published in a foreign language considered
to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information
derived from or of value to NASA activities.
Publications include conference proceedings,
monographs, data compilations, handbooks,
sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION
PUBLICATIONS: Information on technology
used by NASA that may be of particular
interest in commercial and other non-aerospace
applications. Publications include Tech Briefs,

UtilizationReports and Notes,
and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION

NATIONAL AERO NAUT1C S AND SPACE ADM INISTRATI0N

Washington, D.C. 20546

